Tribhuvan University

Institute of Science and Technology

2081

¢

Bachelor Level / Second Year/ Forth Semester/ Science

Full Marks: 60

Computer Science and Information Technology (CSC 262)

Pass Marks: 24

(Theory of Computation)

Time: 3 hours.

(NEW COURSE)

Candidates are required to give their answers in their own words as for as practicable. All figures in the margin indicate full marks.

Section A

Long Answer Questions.

Attempt any TWO questions.

 $[2\times10=20]$

1. Mention the transition function of PDA. List the two ways that PDA accepts the string. Convert the following CFG to PDA. [2+2+6]

 $S \rightarrow AS \mid \in$

 $B \rightarrow aAb \mid Bb \mid ab$

2. List any two regular operators. Minimize the following finite state machine using Table Filling algorithm. [2+8]

3. Define Turing machine as enumerators of strings of a language. Encode the Turing machine $TM = (\{q_0, q_1, q_2\}, \{a, b\}, \{a, b, B\}, \delta, q_0, B, F)$, with input w = ba and δ is defined as follows. $\delta(q_0, b) = (q_2, a, R), \delta(q_2, a) = (q_1, b, R), \delta(q_2, b) = (q_1, a, R), \delta(q_2, B) = (q_2, b, L)$ [1 + 9]

Section B

Short Answer Questions

Attempt any EIGHT questions.

 $[8 \times 5 = 40]$

- 4. Does machine always refer to hardware? Justify. Define positive closure and kleene closure. [2+3]
- 5. What is undecidable problem? Discuss about Post's Correspondence Problem. [1 + 4]
- 6. Define the language of a grammar. For the grammar $S \to 0S0 \mid 0 \mid 1 \mid \in$, show the leftmost derivation for the string 00100 with its parse tree. [1+4]
- 7. Define \in closure of a state. Differentiate between Moore and Mealy machine. [2 + 3]

8. Represent the following regular grammar to finite automata.

[5]

 $S \rightarrow a \mid aA \mid bB \mid \in$

 $A \rightarrow aA \mid aS$

 $B \rightarrow bS \mid \in$

9. Design the DFA that accepts binary string ending with "00" and show its extended transition function for the string 111000. [5]

10. Convert the following grammar to CNF.

[5]

 $S \rightarrow AAB, A \rightarrow aAb \mid \epsilon, B \rightarrow aB \mid a$

11. For the following Turing Machine, test whether the string "() (" is accepted or rejected and represent it in transition diagram. [5]

	()	X	Y	В
q_0	(q_1, X, R)			(q_3, Y, R)	-
q 1	$(q_1, (, R)$	(q_2, Y, L)	(q_0, X, R)	(q_1, Y, R)	
q_2	$(q_2, (, L)$	-	(q_0, X, R)	(q_2, Y, L)	-
q 3	-	-	-	(q_3, Y, R)	(q_4, B, R)
Q4	_	-		-	-

12. Differentiate between Class P and Class NP problem. Mention the transition function of DFA, NFA and ∈ - NFA. [2 + 3]