Tribhuvan University Institute of Science and Technology 2080

r¢x

Bachelor Level / Third Year/ Fifth Semester/ Science Computer Science and Information Technology (CSC314) (Design and Analysis of Algorithms) (NEW COURSE)

Full Marks: 60 Pass Marks: 24 Time: 3 hours

Candidates are required to give their answers in their own words as for as practicable. The questions are of equal marks.

Section A

Attempt any TWO questions.

 $(2 \times 10 = 20)$

- 1. What is recurrence relation? How it can be solved? Show that time complenity of the recurrence relation T(n)=2T(n/2)+1 is o(n) using substitution method. (2+2+6)
- 2. Write down advantages of dynamic programming over greedy, strategy. Find optimal bracketing to multiply 4 matrices of order {2,3,4,2,5}. (2+8)
- 3. Discuss heapify operation with example. Write down its algorithm and analyze its time and space complexity. (3+7)

Section B

Attempt any EIGHT questions

 $(8 \times 5 = 40)$

- 4. Define RAM model. Write down iterative algorithm for finding factorial and provide its detailed analysis. (1+4)
- 5. Write down algorithm of insertion sort and analyze its time and space complexity. (5)
- 6. Write down minmax algorithm and analyze its complexity.

(5)

- 7. When greedy strategy provides optimal solution? Write down job sequencing with deadlines algorithm and analyze its complexity. (1+4)
- 8. Suppose that a message contains alphabet frequencies as given below and find Huffman codes for each alphabet.

Symbol	Frequency
a	30
b	20
c	25
d	15
e	35

- 9. Does backtracking give multiple solution? Trace the subset sum algorithm for the set {3,5,2,4,1} and sum=8 (1+4)
- 10. Why extended Euclidean algorithm is used? Write down its algorithm and analyze its complexity.
- 11. Define NP-complete problems with examples. Give brief proof of the statement "SAT is NP-complete". (2+3)
- 12. Write short Notes on

 $(2 \times 2.5 = 5)$

- a) Aggregate Analysis
- b) Selection problems