

Tribhuvan University

Faculty of Humanities & Social Sciences OFFICE OF THE DEAN

2024

Bachelor in Computer Applications

Course Title: Operating System

Code No: CACS 251

Semester: IV

Full Marks: 60

Pass Marks: 24

Time: 3 hours

Candidates are required to answer the questions in their own words as far as possible.

Group B

Attempt any SIX questions.		$[6\times5=30]$	
2	Define kernel. Explain different types of kernel in operating system.	[1+4]	
3.	What is PCB? What are different information that are included in a PCB?	[1+4]	
4.	How paging can be used for memory management? Also differentiate it with segmentation. [3+2]		
5.	What are page faults and thrashing? Explain demand paging with protection	bit. [1+1+3]	
B.	How deadlock can be prevented? Explain in detail.	[5]	
7.	Explain different file access methods in detail.	[5]	
28.	What is distributed system? Explain the role of clock synchronization in dist	ributed system. [1+4]	
	~ ~ ~		

Group C

Attempt any TWO questions.

 $[2 \times 10 = 20]$

- 9. What is critical section problem? How semaphores can be used to solve critical section problem.

 Also explain producer consumer problem with its solution using Mutex. [1+3+6]
- 10. What is belady's Anomaly in page replacement Algorithm? Explain with example. Consider the following page reference string:

7, 2, 3, 1, 2, 5, 3, 4, 6, 7, 7, 1, 0, 5, 4, 6, 2, 3, 0, 1

How many page faults will occur if the program has four page frames available to it and uses the following page replacement algorithm? [2+2+6]

a) FIFO replacement

b) LRU replacement

c) Optimal replacement

11. What is use of DMA controller? Consider the following process and answer the following questions.

Process	Allocation	Max	Available
	[A, B, C, D]	[A, B, C, D]	[A, B, C, D]
Po	0 0 1 2	0 0 1 2	1 5 2 0
Pi	1 0 0 0	1 7 5 0	187 - 187
P ₂	1 3 5 4	2 3 5 6	
P ₃	0 6 3 2	0 6 5 2	
P ₄	0 0 1 4	0 6 5 6	

- a) What is the content of need matrix?
- b) Is the system in safe state?
- c) If P₂ request (3 4 0 2), can the request be granted Immediately.

[2+2+4+2]