Tribhuvan University Institute of Science and Technology 2081 * Bachelor Level / Second Year/ Third Semester/ Science Computer Science and Information Technology (CSC 211) (Data Structure and Algorithms) Full Marks: 60 Pass Marks: 24 Time: 3 hours. ## (NEW COURSE) Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks. | Section A | | | |---|------------------|---------------------| | Attempt any TWO questions. | (2 | $\times 10 = 20$) | | Compute the GCO of 30 and 12 using recursion. Convert the infix expre postfix using stack. | ession A + B *(C | C – D) / E to (4+6) | | Explain circular linked list in brief. Explain process of inserting and removin Explain merge sort along with its time complexity. Trace the execution of Quarray of numbers 40, 22, 70, 11, 43, 18, 20, 21 and 8. | | (3+7) | | Section B | | | | Attempt any EIGHT questions. | (8× | (5=40) | | 4. Why do we need dynamic memory allocation? Explain abstract data type with 5. What is drawback of linear queue? Explain circular queue. | h example. | (2+3) | | List any one limitation of recursion. Describe stack as linked list. | | (2+3) | | 7. Define max and min heap. How can we use heap property in heap sort? Expla | ain. | (1+4) | | Write the algorithm of binary search with its time complexity. 9 Suppose, the set of keys is {5, 10, 12, 8, 47, 56, 7, 48}, m = 10, 11, 12, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15 | | (5) | | Suppose, the set of keys is $\{5, 10, 12, 8, 47, 56, 7, 48\}$, $m = 10$, and $h(x) = x$ successively inserting these keys using linear probing. | mod 10. Show the | e effect of | | Create a BST from data 20, 25, 18, 16, 19, 30, 17 and traverse it in inorder, p | reorder and nost | (5) | | How do you represent graphs? Explain. | l l | (5)
(5) | | 12 Write short notes on: a) Priority queue b) Minimum spanning tree | (2 | × 2.5 = 5) | | | | |