Tribhuvan University Institute of Science and Technology 2070 ☆

Bachelor Level/ Second Year/ Third Semester/Science	Full Marks: 60
Computer Science and Information Technology (CSc 204)	Pass Marks: 24
(Numerical Method)	Time: 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Attempt all questions:

1. What is bracketing and non-bracketing method? Explain with the help of example. Estimate a real root of following nonlinear equation using bisection method correct upto two significant figures.

$$x^2 \sin x + e^{-x} = 3$$

(3+5)

2. Define interpolation. Find the functional value at x = 3.6 from the following data using forward difference table.

Х	2	2.5	3	3.5	4	4.5
f(x)	1.43	1.03	0.76	0.6	0.48	0.39

3. Derive Simpson's 1/3 rule to evaluate numerical integration. Using this formulae evaluate

$$\int_{0.2}^{1.2} (x^2 + \ln x - \sin x) dx \ (take \ h = 0.1)$$

4. What is pivoting? Why is it necessary? Explain. Solve the following set of equations using Gauss elimination or Gauss Seidal method.

$$x_1 + 10x_2 + x_3 = 24$$

$$10x_1 + x_2 + x_3 = 15$$

$$x_1 + x_2 + 10x_3 = 33$$

(3+5)

(8)

(4+4)

Compare Euler's method with Heun's method for solving differential equation. Obtain y(1.5) from given differential equation using Runge-Kutta 4th order method. (4+4)

$$\frac{dy}{dx} + 2x^2y = 1 \text{ with } y(1) = 0 \text{ [take } h = 0.25\text{]}$$

Solve the following boundary value problem using shooting method.

$$\frac{d^2y}{dx^2} - 2x^2y = 1$$
, with $y(0) = 1$ and $y(1) = 1$ (take $h = 0.5$)

- 6. Solve the equation $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 3x^2y$ over the square domain $0 \le x \le 1.5$ and $0 \le y \le 1.5$ with f = 0 on the boundary. (take h = 0.5).
- 7. Write an algorithm and C-program to approximate the functional value at any given x from given n no. of data using Lagrange's interpolation.

$$(5+7)$$

(8)