Tribhuvan University Institute of Science and Technology 2067 ☆

Bachelor Level/ Second Year/ Third Semester/Science	Full Marks: 60
Computer Science and Information Technology (CSc 204)	Pass Marks: 24
(Numerical Method)	Time: 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Attempt all questions:

- 8. Discuss methods of Half Interval and Newton's for solving the nonlinear equation f(x) = 0. Illustrate the methods by figures and compare them stating their advantages and disadvantages. (8)
- 9. Derive the equation for Lagrange's interpolating polynomial and find the value of f(x) at x = 1 for the following: (4+4)

Х	-1	-2	2	4
F(x)	-1	-9	11	69

10. Write Newton-cotes integration formulas in basic form for x = 1, 2, 3 and give their composite rules. Evaluate $\int_{2}^{1.5} e^{-x^2} dx$ using the Gaussian integration three point formula.

(4+4)

(2+6)

11. Solve the following algebraic system of linear equations by Gauss-Jordan algorithm. (8)

0	2	0	1	[[x ₁]		[0]	L
2	2	3	2	x_2	_	-2	
4	-3	0	1	x_3	_	-7	
6	1	-6	-5	$\lfloor x_4 \rfloor$		۱6.	

- 12. Write an algorithm and program to solve system of linear equations using Gauss-Siedel iterative method. (4+8)
- 13. Explain the Picard's proves of successive approximation. Obtain a solution upto the fifth approximation of the equation

$$\frac{dy}{dx} = y + x \text{ such that } y = 1 \text{ when } x = 0$$

using Picard's process of successive approximations.

14. Define a difference equation to represent a Laplace's equation. Solve the following Laplace equation.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{within } 0 \le x \le 3, 0 \le y \le 3.$$

For the rectangular plate given as:

(3+5)

OR

Derive a difference equation to represent a Poison's equation. Solve the Poison's equation $\nabla^2 f = 2x^2y^2$ over the domain $0 \le x \le 3, 0 \le y \le 3$ with f = 0 on the boundary and h = 1. (3+5)