Tribhuvan University Institute of Science and Technology 2066 ✿

Bachelor Level/ Second Year/ Third Semester/Science	Full Marks: 60
Computer Science and Information Technology (CSc 204)	Pass Marks: 24
(Numerical Method)	Time: 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Attempt all questions:

- 1. Define the fixed-point iteration method. Given the function $f(x) = x^2 2x 3 = 0$, rearrange the function in such a way that the iteration method converses to its roots. (2+3+3)
- What do you mean by interpolation problem? Define divided difference table and construct the table from the following data set. (2+2+4)

Xi	3.2	2.7	1.0	4.8	5.6
Fi	22.0	17.8	14.2	38.3	51.7

OR

Find the least squares line that fits the following data.

X	1	2	3	4	5	6
У	5.04	8.12	10.64	13.18	16.20	20.04

What do mean by linear least squares approximation?

- 3. Derive the composite formula for the trapezoidal rule with its geometrical figure. Evaluate $\int_0^1 e^{-x^2} dx$ using this rule with n = 5, upto 6 decimal places. (4+4)
- Solve the following system of algebraic linear equations using Jacobi or Gauss-Seidel iterative method.
 (8)

$$6x_1 - 2x_2 + x_3 = 11$$

$$-2x_1 + 7x_2 + 2x_3 = 5$$

$$x_1 + 2x_2 - 5x_3 = -1$$

5. Write an algorithm and computer program to fit a curve $y = ax^2 + bx + c$ for given sets of $(x_i, y_i, g. o = 1, ..., x)$ values by least square method. (4+8)

1CSc. 204-2066≉

- 6. Derive a difference equation to represent an Poisson's equation. Solve the Poison's equation $\nabla^2 f = 2x^2y^2$ over the square to main $0 \le x \le 3, 0 \le y \le 3$ with f = 0 on the boundary and h = 1. (3+5)
- 7. Define ordinary differential equation of the first order. What do you mean by initial value problem? Find by Taylor's series method, the values of y at x = 0.1 and x = 0.2 to fine places of decimal form

$$\frac{dy}{dx} = x^2 y - 1,$$
 $y(0) = 1$ (2+6)